Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126688

RESUMO

Chromosomal inversions have been identified in many natural populations and can be responsible for novel traits and rapid adaptation. In zebra finch, a large region on the Z chromosome has been subject to multiple inversions, which have pleiotropic effects on multiple traits but especially on sperm phenotypes, such as midpiece and flagellum length. To understand the effect, the Z inversion has on these traits, we examined testis and liver transcriptomes of young males at different maturation times. We compared gene expression differences among three inversion karyotypes: AA, B*B* and AB*, where B* denotes the inverted regions on Z with respect to A. In testis, 794 differentially expressed genes were found and most of them were located on chromosome Z. They were functionally enriched for sperm-related traits. We also identified clusters of co-expressed genes that matched with the inversion-related sperm phenotypes. In liver, there were some enriched functions and some overrepresentation on chromosome Z with similar location as in testis. In both tissues, the overrepresented genes were located near the distal end of Z but also in the middle of the chromosome. For the heterokaryotype, we observed several genes with one allele being dominantly expressed, similar to expression patterns in one or the other homokaryotype. This was confirmed with SNPs for three genes, and interestingly one gene, DMGDH, had allele-specific expression originating mainly from one inversion haplotype in the testis, yet both inversion haplotypes were expressed equally in the liver. This karyotype-specific difference in tissue-specific expression suggests a pleiotropic effect of the inversion and thus suggests a mechanism for divergent phenotypic effects resulting from an inversion.

2.
Mol Ecol ; 30(15): 3645-3659, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33453134

RESUMO

Species with a circannual life cycle need to match the timing of their life history events to the environment to maximize fitness. However, our understanding of how circannual traits such as timing of reproduction are regulated on a molecular level remains limited. Recent studies have implicated that epigenetic mechanisms can be an important part in the processes that regulate circannual traits. Here, we explore the role of DNA methylation in mediating reproductive timing in a seasonally breeding bird species, the great tit (Parus major), using genome-wide DNA methylation data from individual females that were blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional changes in DNA methylation within the promoter region of several genes, including a key transcription factor (NR5A1) known from earlier studies to be involved in the initiation of timing of reproduction. Interestingly, the observed changes in DNA methylation at NR5A1 identified here are in line with earlier gene expression studies of reproduction in chicken, indicating that the observed shifts in DNA methylation at this gene can have a regulatory role. Our findings provide an important step towards elucidating the genomic mechanism that mediates seasonal timing of a key life history traits and provide support for the idea that epigenetic mechanisms may play an important role in circannual traits.


Assuntos
Passeriformes , Aves Canoras , Animais , Metilação de DNA , Epigênese Genética , Feminino , Reprodução/genética , Estações do Ano , Aves Canoras/genética
3.
BMC Genomics ; 22(1): 36, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413102

RESUMO

BACKGROUND: DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n = 6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled. RESULTS: We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10 kb up- and downstream regions adjacent to the gene body. CONCLUSION: Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.


Assuntos
Passeriformes , Aves Canoras , Animais , Ilhas de CpG , Metilação de DNA , Feminino , Passeriformes/genética , RNA , Reprodução , Aves Canoras/genética
4.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31371403

RESUMO

The timing of breeding is under selection in wild populations as a result of climate change, and understanding the underlying physiological processes mediating this timing provides insight into the potential rate of adaptation. Current knowledge on this variation in physiology is, however, mostly limited to males. We assessed whether individual differences in the timing of breeding in females are reflected in differences in candidate gene expression and, if so, whether these differences occur in the upstream (hypothalamus) or downstream (ovary and liver) parts of the neuroendocrine system. We used 72 female great tits from two generations of lines artificially selected for early and late egg laying, which were housed in climate-controlled aviaries and went through two breeding cycles within 1 year. In the first breeding season we obtained individual egg-laying dates, while in the second breeding season, using the same individuals, we sampled several tissues at three time points based on the timing of the first breeding attempt. For each tissue, mRNA expression levels were measured using qPCR for a set of candidate genes associated with the timing of reproduction and subsequently analysed for differences between generations, time points and individual timing of breeding. We found differences in gene expression between generations in all tissues, with the most pronounced differences in the hypothalamus. Differences between time points, and early- and late-laying females, were found exclusively in the ovary and liver. Altogether, we show that fine-tuning of the seasonal timing of breeding, and thereby the opportunity for adaptation in the neuroendocrine system, is regulated mostly downstream in the neuro-endocrine system.


Assuntos
Expressão Gênica , Comportamento de Nidação , Reprodução , Aves Canoras/fisiologia , Animais , Variação Biológica Individual , Feminino , Hipotálamo/fisiologia , Fígado/fisiologia , Ovário/fisiologia , Estações do Ano , Aves Canoras/genética
5.
Sci Data ; 6(1): 136, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341168

RESUMO

Seasonal timing of reproduction is an important fitness trait in many plants and animals but the underlying molecular mechanism for this trait is poorly known. DNA methylation is known to affect timing of reproduction in various organisms and is therefore a potential mechanism also in birds. Here we describe genome wide data aiming to detect temporal changes in methylation in relation to timing of breeding using artificial selection lines of great tits (Parus major) exposed to contrasting temperature treatments. Methylation levels of DNA extracted from erythrocytes were examined using reduced representation bisulfite sequencing (RRBS). In total, we obtained sequencing data from 63 libraries over four different time points from 16 birds with on average 20 million quality filtered reads per library. These data describe individual level temporal variation in DNA methylation throughout the breeding season under experimental temperature regimes and provides a resource for future studies investigating the role of temporal changes in DNA methylation in timing of reproduction.


Assuntos
Metilação de DNA , Passeriformes/genética , Reprodução/genética , Temperatura , Animais , Cruzamento , Feminino , Estações do Ano , Análise de Sequência de DNA
6.
Genome Biol Evol ; 11(3): 970-983, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840074

RESUMO

In seasonal environments, timing of reproduction is a trait with important fitness consequences, but we know little about the molecular mechanisms that underlie the variation in this trait. Recently, several studies put forward DNA methylation as a mechanism regulating seasonal timing of reproduction in both plants and animals. To understand the involvement of DNA methylation in seasonal timing of reproduction, it is necessary to examine within-individual temporal changes in DNA methylation, but such studies are very rare. Here, we use a temporal sampling approach to examine changes in DNA methylation throughout the breeding season in female great tits (Parus major) that were artificially selected for early timing of breeding. These females were housed in climate-controlled aviaries and subjected to two contrasting temperature treatments. Reduced representation bisulfite sequencing on red blood cell derived DNA showed genome-wide temporal changes in more than 40,000 out of the 522,643 CpG sites examined. Although most of these changes were relatively small (mean within-individual change of 6%), the sites that showed a temporal and treatment-specific response in DNA methylation are candidate sites of interest for future studies trying to understand the link between DNA methylation patterns and timing of reproduction.


Assuntos
Metilação de DNA , Reprodução , Estações do Ano , Aves Canoras/metabolismo , Animais , Epigênese Genética , Feminino , Aves Canoras/genética , Temperatura
7.
G3 (Bethesda) ; 7(1): 165-178, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27836907

RESUMO

Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Regulação da Expressão Gênica , Seleção Genética/genética , Smegmamorpha/genética , Animais , Água Doce , Variação Genética , Genoma , Genoma de Inseto , Genótipo , Fenótipo , Locos de Características Quantitativas/genética , Smegmamorpha/fisiologia
8.
Genome Biol Evol ; 7(2): 581-90, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25618140

RESUMO

The loss of Y-linked genes during sex chromosome evolution creates a potentially deleterious low gene dosage in males. Recent studies have reported different strategies of dosage compensation. Unfortunately, most of these studies investigated taxa with comparatively old sex chromosome systems, which may limit insights into the evolution of dosage compensation and thus into the causes of different compensation strategies. Using deep RNA sequencing, we investigate differential expression patterns along the young XY chromosomes of threespine sticklebacks. Our strata-specific analyses provide new insights into the spatial patterns during the early stages of the evolution of dosage compensation. In particular, our results indicate systematic upregulation of male gene expression in stratum II, which in turn causes female hypertranscription in the same stratum. These findings are consistent with theoretical predictions that selection during early stages of sex chromosome evolution is stronger for a compensating upregulation in males than for the countercompensation of female hyperexpression. In contrast, no elevated gene expression is detectable in stratum I. We argue that strata-specific differences in compensating male gene expression may evolve in response to differences in the prevailing mechanism of Y chromosome degeneration.


Assuntos
Mecanismo Genético de Compensação de Dose , Evolução Molecular , Cromossomos Sexuais/genética , Smegmamorpha/genética , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Caracteres Sexuais , Transcriptoma/genética
9.
Mol Biol Evol ; 32(3): 674-89, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25429004

RESUMO

Evidence implicating differential gene expression as a significant driver of evolutionary novelty continues to accumulate, but our understanding of the underlying sources of variation in expression, both environmental and genetic, is wanting. Heritability in particular may be underestimated when inferred from genetic mapping studies, the predominant "genetical genomics" approach to the study of expression variation. Such uncertainty represents a fundamental limitation to testing for adaptive evolution at the transcriptomic level. By studying the inheritance of expression levels in 10,495 genes (10,527 splice variants) in a threespine stickleback pedigree consisting of 563 individuals, half of which were subjected to a thermal treatment, we show that 74-98% of transcripts exhibit significant additive genetic variance. Dominance variance is also prevalent (41-99% of transcripts), and genetic sources of variation seem to play a more significant role in expression variance in the liver than a key environmental variable, temperature. Among-population comparisons suggest that the majority of differential expression in the liver is likely due to neutral divergence; however, we also show that signatures of directional selection may be more prevalent than those of stabilizing selection. This predominantly aligns with the neutral model of evolution for gene expression but also suggests that natural selection may still act on transcriptional variation in the wild. As genetic variation both within- and among-populations ultimately defines adaptive potential, these results indicate that broad adaptive potential may be found within the transcriptome.


Assuntos
Evolução Molecular , Seleção Genética/genética , Smegmamorpha/genética , Transcriptoma/genética , Animais , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Masculino , Smegmamorpha/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA